
Overview
Example 1: Set the thumbnail size for all galleries
Example 2: Set the thumbnail size for an individual gallery
Example 3: Set the gallery dimensions for the “combined” gallery
Example 4: Set the spacing between tiled images
Example 5: Override the component partial
Example 6: Add a "Download" Button to the Lightbox
Customize your Gallery with CSS!

How to Customize
your Gallery

You have several options to customize how your gallery looks and behaves, depending on how deep
you are willing to go down the rabbit hole:

1. You can customize the gallery to some extent through the inspector; for example, you can
set the gallery layout

2. You can also add some custom options that will be passed onto the UniteGallery script via
the inspector

3. You can also add some CSS to control how the thumbnails are displayed
4. You can adjust additional settings in the plugin back-end page, you can even completely

override the generated script there.
5. You can override the component partial

In each demo, you were also able to read about some possible additional options you can set on your
galleries. It is important to understand which underlying JS library is used for each gallery. Currently,
all galleries except for Swiper use UniteGallery. Swiper uses...Swiper.

So, for example, if you wish to make sure autoplay resumes even if there is any user interaction, then
you can read up on the autoplay options in the Swiper API documentation. You can then set this in
OctoberCMS in the component inspector for the Slider component, in the "Additional Swiper Options"
parameter: autoplay: {disableOnInteraction=false}

Overview

Regarding #2 - Setting Script Options

https://idangero.us/swiper/api/#autoplay

Similarly, if you wish to disable the "full-screen" option on the UniteGallery slider, you can find the
relevant option on the UniteGallery Slider docs. You can then set this in the component inspector for
the Embedded Gallery component in "Script options" parameter:
slider_enable_fullscreen_button: false

http://unitegallery.net/index.php?page=slider-options

If you know that you will be using a bunch of galleries throughout your site, and you also know that
on most of these galleries, you will want to show thumbnails of a specific dimension, then it's easier
to set it in one place instead of in every individual gallery component.

You can set the thumbnail size on the plugin backend settings page: Settings → November Gallery

→ Thumbnails. If you want more control, go to Settings → Image Resizer Settings

Example 1: Set the

thumbnail size for all galleries

Why?

How?

Because you may not want to use the default thumbnail size set for all galleries.

You can set the thumbnail size for a specific gallery on the component properties page (a.k.a.
“Inspector”).

You can also override many other settings (like gallery layout, size, etc.).

Example 2: Set the

thumbnail size for an

individual gallery

Why?

How?

Because you wish to show images on your website in a gallery of a specific size, and you also want to
control the size of the thumbnails in the navigator strip.

In the combined gallery, a large image is displayed along with a row of thumbnails. First, set your
thumbnail size using the inspector let’s say to 100.

Example 3: Set the gallery

dimensions for the

“combined” gallery

Why?

How?

Then check the relevant options available for the combined gallery on the UniteGallery plugin page.

You can see that the “gallery_width” and “gallery_height” options control the overall size of the
gallery. So enter something like the following into the Script options component option:
gallery_width:900,gallery_height:700,thumb_fixed_size:false

The thumbnail size you defined using the inspector will control the size of the generated thumbnails,
it will also automatically add a “thumb_height” option to the gallery. You can override this if you wish
by manually adding a “thumb_height” option under Script options, but this should not be necessary.
Additionally, the thumb_fixed_size:false setting enables dynamically sized thumbnails.

http://unitegallery.net/index.php?page=default-options

You wish to control exactly how your embedded "Tiles" gallery looks, including the space between
thumbnails.

First, review what options you have for the various tiled galleries on the UniteGallery website.

You can see that for the Tiles - Columns layout, you can control the spacing between the columns
with the tiles_space_between_cols: 3 option – so add it to the Script options NovemberGallery
component option!

Example 4: Set the spacing

between tiled images

Why?

How?

http://unitegallery.net/index.php?page=tiles-columns-options

The official OctoberCMS docs provide an in-depth explanation on how you can override component
partials. Here we will describe why you would want to do so with November Gallery, as well as how.

If you are well-versed in October, then skip this section and go to "How?"!

November Gallery uses templates to generate code into your OctoberCMS page. If you wish to
significantly alter the code that is generated, then you will be forced to override the component
partial. Doing so may also be easier than trying to add long and complicated settings using the
component inspector.

These code-generation templates are called "Partials" in October lingo, and they can be found in your
filesystem after you install November Gallery under the following directory:
plugins/zenware/novembergallery . Alternatively, you can find the source code on GitHub (go to

components, then check out any of the subfolders).

You then need to create a file in your OctoberCMS backend, in the "CMS" area, on the "Partials" page,

Example 5: Override the

component partial

See the live demo for this recipe in action!

Why?

How?

https://octobercms.com/docs/cms/components#overriding-partials
https://github.com/lieszkol/november-gallery
https://novembergallery.zenware.io/cookbook/overriding-partials

with the same name as the partial. The file must be "placed" in a directory that has the same name
as your component alias.

Let's go through this step-by-step. Let's say we wish to override the template for generating a swiper
component. We've already dropped the component onto our page. Although this isn't necessary, for
the sake of this tutorial let's change the component alias to "mySwiperGallery":

Remember, swiper needs to be inside of an element that has a width and a height - so we put it inside
of a div that covers the whole viewport. Also, make sure to also rename your component in your page:

We then go to "Partials" and create a file called "mySwiperGallery/default.htm" and set copy-paste
the original source code for this partial from GitHub.

https://github.com/lieszkol/november-gallery/blob/master/components/swipergallery/default.htm

We are going to completely override the javascript that is used to initialize Swiper. We will implement
the "Multiple Slides Per View" demo on the Swiper demo website. The source code for that demo is
available here.

You may in fact find that it's easier to take the demo and copy-paste that into our partial, and replace
the needed bits only. You will have to:

Make sure any <script>...</script> is inside of a {% put scripts %}...{% endput %} twig tag
Similarly, surround any <style>...</style> content inside of {% put styles %}...{% endput %}
Replace that actual list of images in the demo with the following:

Our final complete page looks like this:

{% for galleryitem in gallery.items.sortBy('fileName') %}	<div class="swiper-slide"

style="background-image:url({{ galleryitem.url }})"></div>{% endfor %}

https://idangero.us/swiper/demos/
https://github.com/nolimits4web/Swiper/blob/master/demos/110-slides-per-view.html

{% set galleryitems = __SELF__.gallery.items %}

{% if __SELF__.error %}

	<div class="alert zen-alert">{{ __SELF__.error }}</div>

{% endif %}

{% put styles %}

<style>

 html, body {

 position: relative;

 height: 100%;

 }

 body {

 background: #eee;

 font-family: Helvetica Neue, Helvetica, Arial, sans-serif;

 font-size: 14px;

 color:#000;

 margin: 0;

 padding: 0;

 }

	.swiper-container {

 width: 100%;

 height: 100%;

 }

 .swiper-slide {

 text-align: center;

 font-size: 18px;

 background: #fff;

 /* Center slide text vertically */

 display: -webkit-box;

 display: -ms-flexbox;

 display: -webkit-flex;

 display: flex;

 -webkit-box-pack: center;

 -ms-flex-pack: center;

 -webkit-justify-content: center;

 justify-content: center;

 -webkit-box-align: center;

 -ms-flex-align: center;

And voila, you can see that we've gotten the demo up and running using our gallery of images! You
can see the demo in action at https://novembergallery.zenware.hu/cookbook/overriding-partials

 -webkit-align-items: center;

 align-items: center;

 }

</style>

{% endput %}

<!-- Swiper -->

<div class="swiper-container">

 <div class="swiper-wrapper">

 {% for galleryitem in galleryitems.sortBy('fileName') %}		<div class="swiper-slide"

style="background-image:url({{ galleryitem.url }})"></div>

	 {% endfor %}	

 </div>

 <!-- Add Pagination -->

 <div class="swiper-pagination"></div>

</div>

<!-- Initialize Swiper -->

{% put scripts %}

<script>

var swiper = new Swiper('.swiper-container', {

 slidesPerView: 3,

 spaceBetween: 30,

 pagination: {

 el: '.swiper-pagination',

 clickable: true,

 },

});

</script>{% endput %}

Default Partials Source Code

https://novembergallery.zenware.hu/cookbook/overriding-partials

You can find the source code for the partials used by the various November Gallery components
below:

Gallery
Type

Default
Component
Partial
Path

Embedded
Gallery/plugins/zenware/novembergallery/components/embeddedgallery/default.htm

Swiper /plugins/zenware/novembergallery/components/swipergallery/default.htm

Pop-
up
Lightbox

/plugins/zenware/novembergallery/components/popupgallery/default.htm

Video
Gallery/plugins/zenware/novembergallery/components/videogallery/default.htm

Image
List
Only

/plugins/zenware/novembergallery/components/customgallery/default.htm

https://github.com/lieszkol/november-gallery/blob/master/components/embeddedgallery/default.htm
https://github.com/lieszkol/november-gallery/blob/master/components/swipergallery/default.htm
https://github.com/lieszkol/november-gallery/blob/master/components/popupgallery/default.htm
https://github.com/lieszkol/november-gallery/blob/master/components/videogallery/default.htm
https://github.com/lieszkol/november-gallery/blob/master/components/customgallery/default.htm

One of our users asked:

Endi is using the Embedded Gallery component, so that is what we will focus on. There are various
ways to approach this problem.

1. You could dive into the source code of the underlying component, UniteGallery and
customize it to your needs. However, this would require quite an effort.

2. Or, you could attempt to use the UniteGallery API. However, in our experience, the API is not

Example 6: Add a

"Download" Button to the

Lightbox

Why?

Endi Hariadi @EndiHariadi43 Sep 28 06:40
I want to add a download button to each image. How to do it? I have tried and
failed.

“

How?

https://github.com/vvvmax/unitegallery/
http://unitegallery.net/index.php?page=documentation#using_the_api

very mature and in this case not usable (the "item_change" event could work, but
unfortunately it isn't triggered when the first image is clicked on and the lightbox first
shown, only when the user changes slides).

3. You could create your own UniteGallery skin- but again, this would require several hours of
research and programming.

4. Or you cold just run with a quick-and-dirty jQuery hack

We'll go with #4 :-)

If you inspect the html behind a lightbox in your browser, you can see that the structure is as follows:

div.ug-gallery-wrapper
→ div.ug-slider-wrapper
 → dig.ug-slider-inner
 → div.ug-slide-wrapper ug-slide-1
 → div.ug-item-wrapper
 → img
 → div.ug-slider-preloader
 → div.ug-slide-wrapper ug-slide-2
 → div.ug-slide-wrapper ug-slide-3

The img block is replaced dynamically, and the three ug-slider-wrapper components are manipulated
so that it looks like images slide into and out of the user's viewport. We are going to insert a link
button inside each div.ug-slider-wrapper element, which will dynamically tell the browser to download
the image that is currently being shown. We will make use of the new HTML5 "download" attribute.
For some background, read this great tutorial. The generated link will then use javascript to
dynamically find the div.ug-item-wrapper element that is before it, and the img element inside of the
div.ug-item-wrapper element. So, our link button will look like this:

<a

href="https://novembergallery.zenware.hu/storage/app/media/galleries/budapest/0308M03_cropped.jpg"

 style="position: absolute; width: 100px; left: calc(50% - 50px); bottom: 12px; display:

block; background-color: transparent; border: 3px solid white; border-radius: 5px; color: white;

http://unitegallery.net/index.php?page=examples-skin
https://blog.logrocket.com/programmatic-file-downloads-in-the-browser-9a5186298d5c/

And it will be inserted into our page as follows:

So in the end this is all you need to add into your OctoberCMS page to add a download button to each
image:

font-weight: bold; text-align: center; font-size: 14px; z-index: 100;" onclick="this.href =

this.parentElement.children[0].children[0].src;" download="">DOWNLOAD

Get to the point!

<div class="panel-body">

	{% component 'embeddedGallery' %}

	{% put scripts %}

	<script type="text/javascript">

		$(document).ready(function(){			$(".ug-slide-wrapper").append('<a href="#" style="position:

absolute; width: 100px; left: calc(50% - 50px); bottom: 12px; display: block; background-color:

transparent; border: 3px solid white; border-radius: 5px; color: white; font-weight: bold; text-

and this is how it looks:

You can check out the first gallery on the November Gallery Demo site for a working example!

align: center; font-size: 14px; z-index: 100;" onclick="this.href =

this.parentElement.children[0].children[0].src;" download>DOWNLOAD');

})

	</script>

	{% endput %}</div>

Of course this is not the perfect solution to this problem but it works. You can improve upon it
by removing the inline-css and perhaps adjust it so that the button doesn't become invisible on
a white background. The button only works with browsers that support the download attribute -
if you wanted to support older browsers, you could add some checks to the button OnClick
handler and handle such cases as well. You could replace the button with an image, or move it
to some other part of the page.

https://novembergallery.zenware.hu/demo/embedded-gallery-tiles

Good luck and have fun coding!

You can easily add CSS to your page or layout to affect how your gallery looks. How to do so is really
beyond the scope of this manual. Instead we will share some hidden tricks to add style to your gallery.

November Gallery adds each image's file name as one of the CSS classes of that image when
rendered using the Swiper Gallery component. So, if your image filename is "cute-cat-pic-1.jpg", the
corresponding image will have the class "cute-cat-pic-1", which you can then style as in the following
example (which sets the image to be black-and-white provided that you are using the slider
component):

November Gallery also adds the class swiper-slide-horizontal to each horizontal image when
rendered using the Swiper Gallery component, and swiper-slide-vertical to each vertical image. So
it's easy to, for example, to make sure that vertical images "cover" the screen by default, but are

Customize your Gallery with

CSS!

Trick #1 for Swiper Gallery: style one specific image

{% put styles %}

<style>

	.cute-cat-pic-1 {

		background-blend-mode: luminosity;

	}

</style>{% endput %}

Trick #2 for Swiper Gallery: Style all horizontal images

"contained" and centered and not repeated on landscape devices:

{% put styles %}

<style>

 .swiper-slide {

 background-size: cover;

 background-position: center center;

 background-repeat: no-repeat;

 }

	@media screen and (min-width: 766px) and (orientation: landscape) { .swiper-slide-

vertical {

 background-size: contain;

 background-position: center center;

 background-repeat: no-repeat;

 }

 }

</style>{% endput %}

